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A ROBUST ESTIMATOR OF LOCATION USING AN ADAPTIVE SPLINE MODEL 

by 

Dong Yoon Kim 

ABSTRACT 

This paper contains a new approach toward the robust 

estimation of a location parameter.  We propose NPS (Normal 

Pareto Spline) distribution which provides rough fit to 

density functions for arbitrary unimodal symmetric distri- 

butions.  The bases of our NPS estimation are Pareto tails 

and spline constraints.  Pareto tails can represent a 

diversity of tail behavior, and spline constraints ensure 

the smoothness of the density function. 

We show that the NPS estimate of location has lower 

asymptotic variance than Huber's M-estimator in most cases, 

regardless of how Huber's trimmed constant k  is chosen. 

We also show that the NPS estimate of location can 

guarantee resistance for outliers. 

For the generalized two sample location problem, where 

the scale parameters are unequal, we propose an iterative 

method to estimate the shift parameter and also have a proof 

that this iterative method converges to the desired M-estimate 

for an arbitrary scale location family of symmetric distributions 

Some Key Words: Pareto Tails, Spline, Outlier, Robust Adaptive Estimation 

AMS 1980 subject classification.  Primary 62F35 
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Chapter 1 

Introduction 

Suppose we assume for our underlying statistical 

model a set of distributions  {PQK e G -/ that are fairly 

well specified, and then in terms of this model, find a 

good estimator for some characteristics of the true 

underlying distribution.  If the true distribution of 

the population is not closely approximated by one of the 

set  {PQ}, 8 6 5, then the estimator can have a large 
o 

error, no matter how large the sample size.  To safeguard 

against this danger, we need a robust estimator. 

Our approach for symmetric distributions is to use 

a sufficiently rich class of distributions to approximate 

the family of symmetric distributions.  The distributions 

in our class will be called Normal Pareto Spline distributions 

Given i.i.d. observations  x,,...,x  from an arbitrary in 

symmetric distribution  g, we shall estimate  g  and its 

characteristics by using the maximum likelihood estimate 

(MLE) on the false assumption that g S NPS.  The MLE 

gives rise to  9  and  PA.  This estimator will be called 

the NPS estimator.  Insofar as the NPS family of distri- 

butions is very rich, we can expect that there will be a 

member f- close to  g, and the NPS estimator will be close 

to  f   and therefore to  g.  A problem with evaluating 
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this approach arises from the fact that it is not obvious 

what the choice for the closest  fQ  to  g  should be. 

In a sense we are moving a step toward nonparametric 

density estimation by estimating g through this rich 

three-parameter family of NPS distributions.  In 

another sense, to be explained later, this approach 

may be regarded as an adaptive generalization of a 

version of Huber's  M estimator. 

In chapter 2, we summarize other approaches, both 

nonadaptive and adaptive, to robust estimation.  In 

chapter 3, we define the NPS distribution, and explore 

the characteristics of the NPS family of distributions. 

In chapter 4, we derive asymptotic properites of NPS 

estimates and summarize simulation results.  Also we 

show that the NPS estimate of location will usually 

perform better than Huber's M-estimator.  In chapter 5, 

we discuss several variations of the"two-sample location 

problem and also introduce an asymmetric NPS distribution, 

In chapter 6, we explain certain computational techniques 

used in this dissertation, including a simplex method, a 

Monte-Carlo swindle, and a variance reduction method for 

the logistic distribution.  In chapter 7, we summarize 

all results.  In the appendix, we have program lists for 

the NPS MLE. 
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Chapter 2 

Background 

While model building is certainly desirable, we 

know in practive that most models will not exactly fit 

the real situation.  A realistic approach seeks statistical 

procedures good for a broad class of possible underlying 

models.  Such statistical procedures are called robust. 

2.1.  Nonadaptive estimators 

In 1964, Huber introduced M-estimates, which are 

flexible.and can be generalized to multiparameter problems. 

Any estimate  T  which minimizes n 

£p(x.;T )  where  p  is an arbitrary function is 

called an M-estimate. 

Simplified versions, as location estimates, involve 

p(x,T)  of the form p(x-T)  for some function  p, with 

p(0) = 0, p(x) ^ 0  for all  x.  Many nonadaptive robust 

estimates are M-estimates. 

As examples of M-estimates; 

(i)  If  p(x) = x , the corresponding estimator is 

the sample mean. 

(ii)  If  p(x) = |x|  the corresponding estimator is 

the sample median. 



(iii)  In Huber's (1964) M-estimate 

( 

p(x) = \ 
¥2 

k|x| - ik2 

if  x < k 

if  Ix| > k, 

(2.1.1) 

and the corresponding estimator is closely related to 

Winsorizing. 

(iv)  if 

P(x) = 

ix2    if  |x| < k 

|k2    if  |x| > k, 

the corresponding estimator is closely related to a trimmed 

mean. 

As a multiparameter estimate, the choice 

p(x;8) = - log g(x;6) 

gives the ordinary MLE where the underlying distribution 

is g. 

Two other commonly used robust estimators are the 

L and R estimators.  An estimate is an L-estimator 
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(Linear combination of order statistics) if it is of the 

form 

n    in (1)    in 

and the x/-\  ars the order statistics.  The trimmed 

mean X  corresponds to 

w.     =   A(i/(n+l))     where 

f -1 (l-2a) ifo<t<l-a 

Mt)   =  A 

if     t  <   a     or     t >   1  - a 

An estimator is an R-estimator if it is of the form 

Tn = median {wjk'Xjk} where (j=l,...,n, k=j,...,n) 

wjk  "  •W-j/X  idi'   di  " °   f°r  a11  ±r   XJk=(X(j)+X(k)) 

The Hodges-Lehmann estimator corresponds to d, = ... 

These estimators can be modified a bit to be adaptive 

For example, for the M-estimator, one may replace 

p (x)  by  p(x/s)  where  s  is an estimate of scale 

= d_ = 1 
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based on the data.  The L and R estimators are scale 

invariant so no such modification is needed for these 

estimators.  The usual meaning of "adaptive" as applied 

to an estimator is that the form of the estimator adopts 

according to the shape of the sample distribution, not 

merely the scale. 

2.2.  Adaptive estimation 

In 1956, Stein published a paper which dealt with 

the problem of estimating and testing hypotheses about 

a parameter  8.  The question he asked was "when can one 

estimate ' 8  as well as asymptotically not knowing the 

true distribution of a population as knowing the true 

distribution."  Stein gave a simple necessary condition 

for several important examples and he indicated a 

procedure for testing whether a center of symmetry has 

a specified value that should work. 

Consider estimators  8  of the location parameter  8 n 

based on a sample  (X,,X_,...,X )  from an unknown 

distribution G(x-8)  which is symmetric about the origin, 

and has density g(x-8).  We can divide the previous 

literature on adaptive estimation methods into two main 

streams. 
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One stream of research on adaptive estimation finds 

an estimator  8  of  8  such that  8n  is asymptotically 

efficient under the model.  I.e., 

L(n2(9n-8)) + NCO,!"1)  as  n + °° (2.2.1) 

where  I  denotes the Fisher information on  8  from 

the distribution G(x-9). 

Takeuchi (1971) considers a fictitious random sub- 

sample of size k drawn from the original sample and 

constructs the best linear estimator based on the sub- 

sample.  Since he estimates the variance-covariance 

matrix of the order statistics of the subsample, this 

method can be classed as an adaptive estimate. 

Stone (1975) takes any estimator  9   of  9  which 

1 
2 — 

satisfies  n (9 -8) = 0(1)  as  n * °°.  By using a 

nonparametric estimate of  L(x) = g'(x)/g(x), he imitates 

a single step of a Newton-Raphson iteration solving 

n 
LfX-8 n' n I  L(X-8„) = 0 with  8_  as the initial approximation. 

i=l 

Since  L(x)  is estimated from the data,  8   is an 

adaptive estimate resembling the MLE. 

Van Eeden (1970) and Beran (1974) estimate 

cf)(u,g) = - g' [G  (u)]/g[G  (u) ]  which provides the 
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approximate scores for the best linear rank statistic, 

using a window scheme and a Fourier transform respectively. 

We call these methods adaptive estimate because the 

<j>(u,g)'s are calculated from the data. 

Beran (1978) estimates the density from the data in 

the sense of nonparametric minimum Hellinger distance. 

Using the estimated density, he estimates the location 

parameter 9. 

Though all of these foregoing methods have very 

desirable mathematical properties, they are very hard to 

implement and require many calculations.  Also, attainment 

of their asymptotic behavior seems to require very large 

sample sizes. 

The adaptive estimation literature contains a second 

stream of papers describing methods which are not fully 

asymptotically efficient, but which are easy to implement 

and which require relatively small amounts of calculations, 

Hogg (1974) (modified by De Wet and Van Qyk (1979), 

Harter et al. (1979)) uses the trimmed mean in the special 

symmetric case and shows how to select the amount of 

trimming.  Since these methods use the trimmed mean, 

they do not satisfy the condition(2.2.1) of asymptotic 

efficiency except in the rare case in which a trimmed 

mean is asymptotically efficient. 
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2.3.  Why NPS estimation? 

Beran's, Stein's and similar methods have excellent 

asymptotic properties, but are not practical for everyday 

use.  Hogg's method is easy to implement but it has less 

desirable theoretical properties.  NPS estimation lies 

between these approaches.  We might say that Hogg's method 

is discrete and restricted.  (Since it is developed by 

considering only a few possible underlying distributions) 

The NPS estimate selects from a continuous range of 

distribuitonal shapes measured by a shape parameter y 

and can adapt to a wide range of sample tail behaviors. 

Except for Beran's (1978) method, only the NPS 

estimate suggests the rough shape of the underlying 

distribution. 
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Chapter 3 

NPS (Normal Pareto Spline) Distributions 

3.1.  Definition of NPS distributions 

A random variable  X has standard NPS (Normal Pareto 

Spline) distribution with tail parameter y,   if it has a 

density of the form 

f   2 u 
eax +b if  Ixl < 1 

fQ(x,y) = , (3.1.1) 
-T7-1 

i-{l +^( |x|-l) } Y     if  l<|x|<A,  ? 10c    c 0 

If y > 0  then A is  °°, and if y  < 0  then A = 1 - —. 

If y  = 0, then A = °° and 

f0(x,0) = ^ e c        if  1 < |x| (3.1.1') 

The parameters  a,b and  c depend on y,   and are 

determined by the requirement that Pr{|x| > l) = 0.2 

and the spline constraints that the density and the first 

derivative of the density are continuous everywhere. 

Thus the parameters  a,b and c  satisfy the following 

spline equations: 



or 

and 

or 

and 
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f0(l
+) = f0d") (3.1.2) 

a + b = - log (10c) 

fg(l+) = fgd") (3.1.3) 

2ac = - (1+Y) 

1    2,. 
/  eax +Ddx = 0.8 (3.1.4) 
-1 

In addition, we often consider the family of variables 

Y = y + xX, where  X has the standard NPS distribution. 

Then Y has the NPS distribution NPS(U,T,y),  with center 

at  y  and interdecile range equal to  2x.  An illustration 

appears in Fig. 3.1.5. 
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Fig. 3.1.5  Schematic illustration of the 

NPS distribution (density shown has y = 0) 

10  percentile U-T 

U 

y+T : 90   percentile 

50  percentile (median) 

th 

The three primary parameters are  y, the center of symmetry; 

T  the scale parameter; and y, the tail shape parameter. 

The other parameters  a,b,c  are determined implicitly by  y, 

and are tabulated in Table 3.1.6. 
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Table   3.1.6     a,b,c     as   functions  of y 

Y a b c 

0.5 -0.6410 -0.7210 0.3900 

0.4 -0.7242 -0.6971 0.4142 

0.3 -0.7997 -0.6766 0.4377 

0.2 -0.8687 -0.6583 0.4604 

0.1 -0.9324 -0.6417 0.4826 

0 -0.9915 -0.6265 0.5043 

0.1 -1.0466 -0.6126 0.5255 

0.2 -1.0983 -0.5998 0.5463 

0.3 -1.1469 -0.5878 0.5667 

0.4 -1.1927 -0.5767 0.5868 

0.5 -1.2364 -0.5663 0.6066 

0.6 -1.2778 -0.5565 0.6261 

0.7 -1.3172 -0.5473 0.6453 

0.8 -1.3549 -0.5386 0.6643 

0.9 -1.3910 -0.5303 0.6830 

1.0 -1.4256 -0.5225 0.7015 

1.1 -1.4588 -0.5150 0.7198 

1.2 -1.4907 -0.5079 0.7379 

1.3 -1.5215 -0.5011 0.7558 

1.4 -1.5513 -0.4946 0.7736 

1.5 -1.5800 -0.4883 0.7912 
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The central portion of the density is Gaussian and 

the tails represent a reparametrization of Pareto densities. 

(See DuMouchel (1983)). 

We will usually restrict ourselves to y > -0.5 

because for y < -0.5, f(x) does not have continuous 

derivatives at the end points  y + x*A. 

A family of densities which are Gaussian in the middle 

and have a variety of tail behaviors are useful, realistic 

models for many kinds of data.  Having heavy tails (y larger 

than 0) allows us to model outlier-prone data, since, if 

X has an NPS distribution with y  > 0, then E{|x|p} = °° 

for p > i. 

3.2.  Tail behavior of the NPS distribution. 

The family of NPS distributions can represent a 

diversity of tail behavior.  (See Fig. 3.2.2).  At y  = 0 

we get exponential tails.  Anscombe (1961) mentions that 

Generalized Pareto tails with y  >   0  can be generated 

by gamma mixtures of exponential distributions.  When 

Y <   0, the distribution is truncated; when y  • - 1, 

the uniform distribution on  (U-1.25T, U+1.25T)  results, 

while y = 0.5  leads to a triangular tail behavior. 

Since 
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*  f0(x,Y) 

fg(x,Y) 

^{l.ICx-l)}"^"1 

-iiHUl + *(x-l)} Y 
10c     C 

if 1 < x < A 

if  1 < x < A 

and 

fg(X,Y) 
.1-3 

(l+Y)(l+2Y)(l + I(x_i)} Y     if  1 < x < A 
10c3 C 

tail behavior is as described in Table 3.2.1,  Some graphs 

of NFS distributions are presented in Fig. 3.2.2. 

Table 3.2.1  The tail behavior of NPS(0,l,y) as 

a function of Y where  1 < x < A. 

Range of y fg(xY ) f0(x, rY) Tail behavior Support 

0 <^ Y - + Infinite 

-0.5 < Y < 0 - + Finite 

Y = -0.5 - 0 Finite 

-1 < Y < -0.5 - - Finite 

Y = -1 0 0 Finite ? 
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3.3.  Moments of the NPS(.0,l,y) distribution 

Let the random variable  X have a standard NPS 

1    k distribution.  If  y < ?-, E(X )  exists.  Since  f  is 

symmetric around 0, 

E(xk> = 0  if  k  is odd, and y  <  | 

So the mean is  0  (if y  <   1), and the skewness is  0 

(if y  <  j). 

1      2 A - — - 1 
Var(X) = EX2 = / x2-eax +bdx + 2'/ x2-^! + *(x-l) } Y  dx 

_i 1    l^c    c 

Integrating by parts, we have 

1    2 r     2 ax +b,    l-4c J x e    dx = 
-1 10a-c 

f 

1 -i-l 
J* x2--Ul+I(x-l)} 

Y  dx = ^ 
_i   1UC    c 

10  5CY-D  5(Y-1) (2Y-1) if Y < ^ 

if y  > \ 

and finally 

C 
l-4c   1 
lOac   5 

2c 2c 
5(y-l)   5(Y-1) (2Y-D 

Var(X) = \ 

if Y < 2 

• C      V  >  i 
lf Y - 2 

(3.3.1) 
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EX4 = J1x4.e
ax2+bdx + 2-I

Ax4-Ti-{l+X(x-l) ""\lx, 

J1x4eax2+bdx = 2a-3^-4c); 
-1 20a c 

{ X' lfe{1+H(x-1)}"7" dX = 

1     4c  .    12c2 24c3 

10 " 10(Y-1) +10(y-l) (2y-l) " 10(Y-D (2y-l) (3y-l) 

,       24c4    if Y < I 
+
 10(Y-1) (2Y-D (3Y-D (4Y-D 4 

if Y I j; 

Finally 

EX4 m    2a-3(l-4c) | 1     4c  ,     12c2 

a2c   ^5  5(Y-D  5(Y-D (2Y-1) 

24c3 24c4 
if Y<^ 

5(Y-D (2Y-D (3Y-D  5(Y-D (2Y-1) (3Y~D (4Y-1) 

(3.3.2) 

and the kurtosis of X  is given by 
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k - —ssl 
{Var X}2 

The variance and kurtosis are tabulated in Table 3.3.3 
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3.4 Information matrix for the NPS(y,a,Y) distribution 

The random variable Y = y + xX has density 

f(y,9) = —f(^——,y).     By definition, the information 

matrix  I  is given by 

I(y,T,y) = 

imu<*   i<%#%fr* itw&t* dM >y " ^ 

jiS&Fg-)**  P&fi»     !(*&#)** li A *T 

!(*%$¥)*<*  i^zjgrt* pfrft* 

We restrict ourselves to y > -0.5, because  I 

-2. 
yy 

ss  oo 

for y £-0.5.  Since  I(y,T,Y) = T  1(0,l,y)/ we evaluate 

I for  y = 0 and x = 1. 

C 

3 log f 
3y 

-2ay 

= \ 

1+Y 

cU+*(|y|-l)} 

if |yl  i 

•sgn (y)   if  1 < |y| < A 

(3.4.1) 

3 log f 
3T -I + VL4^ (3.4.2) 

and 
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3a 2   3b 
3YY  + 37 if |y|  l 

3 log f 

§§£ + Y-
2log (1+I(|y|-1)} 

(l^-^dyl-l)  -1   -2 3c 

(1+I(|y|-1)} 
3Y 

if 1 < |y I < A 

(3.4.3) 

Since —~—°— is an odd function of y  and  ^— 

and —r—^— are even,  I  = I,  =0  and 
3y yx   yy 

I(U,T,Y) = 

'y,y 

'T,T 

Y/T 

T,Y 

"YfY 

In particular, 

:   • - ^(o.Sa •  IjitH  > 
M'M    x        10c (l+2y) 

(3.4.4) 

Y 1+Y{_4  
T
2
  

5c   5c2(l+2y) 

where  c  is a function of  y  tabulated in Table 3.1.6, 
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Table 3.4.1  Information matrix 

Y Vu I 

-0.4 2.557 4.581 
-0.3 1.828 2.876 
-0.2 1.642 2.04 
-0.1 1.588 1.636 
0 1.586 1.403 
0.1 1.608 1.254 
0.2 1.642 1.151 
0.3 1.683 1.078 
0.4 1.728 1.024 
0.5 1.774 0.985 
0.6 1.822 0.9562 
0.7 1.869 0.9351 
0.8 1.917 0.9197 
0.9 1.964 0.9086 
1 2.01 0.9008 
1.1 2.055 0.8955 
1.2 2.1 0.8923 
1.3 2.144 0.890.6 
1.4 2.186 0.8902 
1.5 2.228 0.8908 

Table 3.4.2 Asymptotic standa 
coefficient of ML 
matrix 

Y % 
a 
T 

-0.4 0.6253 0.6974 
-0.3 0.7397 0.7418 
-0.2 0.7805 0.7891 
-0.1 0.7934 0.8312 
0 0.794 0.8689 
0.1 0.7886 0.9025 
0.2 0.7803 0.9331 
0.3 0.7708 0.9648 
0.4 0.7608 1.002 
0.5 0.7507 1.048 
0.6 0.7409 1.107 
0.7 0.7314 1.179 
0.8 0.7223 1.267 
0.9 0.7136 1.37 
1 0.7054 1.481 
1.1 0.6975 1.604 
1.2 0.6901 1.727 
1.3 0.683 1.843 
1.4 0.6763 1.965 
1.5 0.6699 2.056 

I I 
t,Y Y,Y 

3.015 3.6 
1.581 2.359 
0.764 1.344 
0.4072 0.8807 
0.2215 0.6224 
0.1067 0.4273 
0.02767 0.2766 
0.02421 0.1785 
0.05766 0.1182 
0.07814 0.08141 
0.09034 0.0585 
0.09738 0.04387 
0.1008 0.03425 
0.102 0.02772 
0.1015 0.02314 
0.1002 0.01982 
0.09823 0.01733 
0.09583 0.0154 
0.09359 0.01388 
0.0909 0.01263 

PT,Y 
a 
Y 

0.7424 0.7867 
0.6068 0.819 
0.4613 0.972 
0.3392 1.133 
0.237 1.305 
0.1457 1.546 
0.04904 1.904 
0.0552 2.37 
0.1657 2.949 
0.2759 3.646 
0.382 4.474 
0.4808 5.445 
0.568 6.565 
0.6428 7.841 
0.7029 9.242 
0.7523 10.78 
0.79 12.39 
0.8183 14.02 
0.842 15.73 
0.857 17.27 
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Chapter 4 

The One Sample Location Problem: Estimation 

4.1. Problem description 

Let YwY? ' • • • >yn denote a random sample from a 

continuous population with symmetric unimodal distribution 

function G(y-y).  In this chapter we shall deal with the 

problem of estimating the location parameter  u.  Our 

estimator will be that derived from computing the maximum 

likelihood estimate of  0 = (y,x,y)'  based on the assumption 

that the distribution belongs to the NPS family.  We shall 

call this the NPS estimate.  By estimating y    we describe 

the tail behavior of the distribution g.  Inasmuch as this 

estimate of y  affects our procedure for estimating the 

location parameter  u, we may regard the NPS estimate of  y 

as adaptive. 

For large samples one should expect the NPS estimate 

to be close to that value of  9  that corresponds to the 

NPS distribution that is closest to G.  However there are 

several notions of a closest distribution which may be 

considered and we shall describe three in the next section. 

4.2. Three concepts of closest NPS distribution 

The first concept we introduce is that of the 

NPS distribution with the same median, variance and 
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90-th percentile as  G(x-y).  Since these parameters of 
2 

the NPS distributions are  y, T  multiplied by Var (X) 

derived in section 3.3, and  U+T  respectively, these 

matching conditions can be used to determine 

8M 
= dJ./'Tw,T11)'.  This concept seems to be rather naive M    M M M 

It is based on some arbitrary choices such as the 90-th 

percentile and is unlikely to have sound theoretical 

justification.  Moreover  9.,  is not defined if the 

variance of Y is infinite. 

A second concept derives from the fact that under 

suitable regularity conditions, the NPS estimator will 

converge to the NPS distribution which is closest in the 

Kullback-Leibler sense.  That is, we select  9   to 

minimize 

Kgu,fe) = /g(y-u) log [||£j£j-]dy (4.2.1) 

where  ffl(y) = f (y|9)  represents the density of the 

NPS(y,x,Y)  distribution and g  the density g(y-u) 

of  G(y-u). 

This concept introduces some difficulties.  For y  <   0, 

f  is a distribution of bounded range and  I(g ,fQ) = °° 

if g  has infinite support.  Thus, even though for some 

Y < 0, f„  may resemble  g  very closely, fQ will not be 
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a candidate«for the closest NPS distribution to  g .  In 

particular, numerical calculations in Table 4.2.2 demon- 

strate that the closest NPS distribution in the 

Kulback-Leibler sense to the standard normal  N(0,1) 

is of the form NPS(0,TVT,0)  with  T.,_ = 1.2508.  Also 

the closest for the standard logistic is NPf(0,T  ,0) 

v/ith  TKL = 2.171.  (See Table 4.2.3) 

As we shall see, simulations of NPS estimates from 

N(0,1)  data yield values of  Y  around -0.2.  In contrast 

to  9K_, our first relatively naive concept gives 

(UM,x ,YM) = (0,1.282,-.218)  as the parameter of the 

closest NPS estimator.  Thus  8..  seems to be more M 

relevant than  9VT. 

Finally we introduce a third concept.  Let  y. 
•* c l, n 

be expected i   order statistics among  n  samples of 

G(y-u)  for  1   i <_ n.  The closest distribution will 

be NPS(y ,x ,v )  where  6  = (y ,x ,y   )  is the Mn' n''n n    pn' n''n 

NPS estimate based on the synthetic (nonrandom) sample 

Yi „/v-) „/«-./v   •  The vector 8  will be called the synthetic Jl,n -2,n    "n,n n 

parameter.  It is clear that  8   depends on  n  and 

one would expect y       to converge to  0  as  n •* "  if 

g  corresponds to  N(0,1)  or L(0,1).  Kov/ever we shall 

see that for moderately large  n, y       will be about 
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Table 4.2.2 max /(log f)*g dx for various y's 
T 

when  g % N(0,1) 

0 1.25078 
0.001 1.25078 
0.002 1.25097 
0.003 1.25097 
0.005 1.25097 
0.01 1.25117 
0.02 1.25175 
0.03 1.25234 
0.04 1.25312 
0.05 1.25390 
0.1 1.25898 
0.2 1.27304 
0.3 1.29082 
0.4 1.31074 
0.5 1.33222 

/ (log f) »gdx 

•1.43038 
•1.43046 
•1.43055 
•1.43063 
•1.43079 
•1.43121 
•1.43205 
•1.43289 
•1.43375 
•1.43461 
•1.43899 
•1.44789 
•1.45664 
•1.46504 
•1.47298 

Table   4.2.3     max  /(log  f)*g dx  for  various   y's 
T 

when     g  ^ logistic   (0,1) 

Y T /(log   f)«gdx 

-2.00040 
-2.00041 
-2.00043 
-2.00044 
-2.00047 
-2.00056 
-2.00077 
-2.00102 
-2.00131 
-2.00163 
-2.00366 
-2.00911 
-2.01553 
-2.02230 
-2.02913 

0 2.17101 
0.001 2.17082 
0.002 2.17042 
0.003 2.17023 
0.005 • 2.16964 
0.01 2.16828 
0.02 2.16593 
0.03 2.16398 
0.04 2.16222 
0.05 2.16066 
0.1 2.15675 
0.2 2.16164 
0.3 2.17765 
0.4 2.20050 
0.5 2.22765 
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-0.2, -0.05  for the N(0,1)  and L(0,1)  respectively. 

In Table 4.2.4 and 4.2.5, we list the synthetic parameter 

0  based on the synthetic sample from the N(0,1)  and 

un T 
n Yn 

0 1.364 -.761 
0 1.297 -.391 
0 1.289 -.305 
0 1.281 -.227 
0 1.280 -.214 

L(0,1)  respectively. 

Table 4.2.4  Synthetic parameter  9   based on  N(0,1) 
*•* <w •«* 

n 

20 
50 

100 
500 

1000 

Table 4.2.5  Synthetic parameter  9  based on  L(0,1) 
~ ». -» 

n 

20 
50 

100 
500 

1000 

We shall refer to the parameters of the NPS 

distributions corresponding to these concepts as 

(1) Variance and 90-th percentile matching or 

just plain matching, 9 , 

(2) closest Kulback-Leibler, 9KT> 
an^ 

(3) synthetic NPS parameter, 9 

In Table 4.2.6 we list three special distributions. 

These are the standard Gaussian, Logistic and Slash, distri- 

butions . 

yn T 
n Yn 

0 2.292 -.481 
0 2.208 -.187 
0 2.195 -.113 
0 2.186 -.054 
0 2.184 -.046 
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Table 4.2.6  Standard distributions 

Name       Notation    Density        Support 

2 x 
1 ~2" Gaussian    N(0,1)       e - « < x < • 

-x 
Logistic    L(0,1)       -—--^-     - °° < x < » 

(1 + e"x}2x2 

1 1 - •"*" "Slash       S(0,1)      -=- = -    - • < x < - 
/2TT 

In Figures 4.2.8-4.2.10 we present the densities 

of the closest NPS distributions to these standard 

distributions for each concept, and in Table 4.2.7, we 

tabulate the corresponding values of  8 = (U,T,Y)'. 

Table 4.2.6 9M.6KL/9n for N(0,1), 1.(0,1), S(0,1) 

For N(0,1) u T Y 

9M 
0 1.282 -0.218 

!KL 0 1.251 0 

91000 
0 1.280 -0.214 

For L(0,1 u T Y 

8M 
0 2.197 -0.043 

!KL 0 2.171 0 

91000 
0 2.184 -0.046 

For S(0,1) V T Y 
* 

9M 
- - - 

!KL 0 3.335 1.246 

9-,Artrt 0 3.335 1.246 

* 
not available because Var[S(0,l)J = °° 
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When the underlying distribution is g, let f(y;0j—) * 

be the result from concept 2 (closest Kullback-Leibler) 

and let  f(Y?§iQno)  ^e the  result from concept 3 

(synthetic NPS parameter, where n = 1000) of defining 

the "closest" NPS distribution to g.  We are especially 

interested in the behaviors of y  , Y1Qno ^
or various commonly 

used distributions  g which have infinite support. 

Table 4.2.11 lists some possible g's  for various 

combinations of  YKL's  and Y10oo'
s* 
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Table 4.2.11 Classification of values of YKL's and Y100Q'S 

for some distributions  g which have infinite 

support 

sign of y KL 

NPS(y > 0) Center : 
** 

Normal 

Slash for tail : Cauchy *** 

Cauchy 

Center : NPS(y=0) NPS(y=0) ** 

for tail : Cauchy 

* 
Center : Normal Normal 

for tail : Cauchy logistic *** 

NPS(u,x,0) (Normal) center from minimum expected order 

statistics to maximum expected order statistics where 

n = 1000, with Cauchy for tails. 

** 
c(<.999), c of Normal center and (1-c) of Cauchy far tails, 

*** y T 
<   0  is impossible if  g  has infinite support 

KLi 
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4.3.  The Huber M-estimator 

We shall compare the NPS estimator with Huber's 

M-estimator.  The M-estimator consists of selecting y 

to minimizing  Ep(y.,y)  or equivalently to set 

EiMy-,u) = 0 where \\i  = 9p/3y.  One typically is con- 

cerned with those examples where  p  and ty    may be 

written in the form p (y-u)  and ip(y-u)  respectively, 

Then, it is known (Huber (1964)) that under regularity 

conditions on the symmetric distribution G(y-y) , the 

M-estimator T  is consistent, and as  n •*•  °°, 

L(^n(Tn-y)) + N(0,a*)  where 

2   /Qy) -g(y)dy 

[J> (y) •g(y)dx]/ 

By Huber's  M-estimator we mean  the M-estimator where 

y /2 if    lyl   ; k 

p(y)   - • (4.3.1) 

k|y|-kV2 if yl   > k 

and 

<My)  = • 

k«sgn   (y) 

if yl £ k 

if     |y|   >  k 

(4.3.2) 



3y. 

Then the asymptotic variance is given by 

g*(g,k) = /min )(y
2r^2)q(Y)dv (4>3<3) 

[/ g(y)dy]2 

-k 

This estimator may be regarded as a variation of 

the NPS estimator where the maximization with respect to 

9 = (U,T,Y)'  is carried out subject to the restrictions 

T = k  and y = 0.  In this sense the NPS estimator is an 

adaptive generalization of Huber's M-estimator, where the 

data are used to estimate  x  and y.  As we pointed out 

in section 2.1, it is not uncommon to use an adaptive 

version of the Huber estimator where the scale parameter 

is estimated. 

For later comparisons, we tabulate the asymptotic 

variance of Huber's M-estimator for several values of k 

for normal,logistic and slash distributions in Table 4.3.4. 

Table 4.3.4.  Asymptotic variance of Huber's M-estimator 

Distribution 

k 
.5 

1 
1.5 
2 
2.5 
3 
3.5 
4 

Normal logistic slash 

1.2625 3.4816 5.6867 
1.1073 3.1947 5.4896 
1.0371 3.0595 5.5961 
1.0104 3.0178 5.9294 
1.0023 3.0283 6.4283 
1.0004 3.0637 7.0249 
1.0001 3.1071 7.6922 
1.0000 3.1490 8.3999 
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4.4.  Asymptotic distribution of NPS estimates 

If G has infinite support and the closest KL 

distribution to  G(y-u)  has  y > 0, then from Huber (1967) 

we see that under mild regularity conditions, 

L[^(en-eKLn * N(0,Z(6KL)) 

where Q^     is the NPS estimator based on a sample of size n from G, 

Z(9) = B"1AB"1, (4.4.1) 

A. A(9) = E[(5 lo?^(Yf9))(3 lo*af
(Y'9))']        (4.4.2) 

and 

,2 
log 

39' 
B = B(9) = - E(i  lQg ff'Q)   . (4.4.3) 

It should be noted that these expectations are with 

respect to the distribution G. 

However the case where  G  is normal and YK_ = 0 

does not satisfy the regularity conditions.  Indeed our 

calculations indicate that  9   approaches  0  so slowly 

that it would be unreasonable to expect the limiting 

distribution of  /n(§ -8T,_)  to be normal.  Instead we n KL 
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shall present a heuristic derivation to the effect that 

/n(9 -9 )  is asymptotically normal.  This derivation, 

which follows, involves the expansion of the log of the 

likelihood about  9=9   and Y.  = y.   where  Y.   are n       in  •" in in 

the order statistics and y,   are their expected values. 

n  3 log f(Y. ,9„) 

i=l °- I   —w' 

n  3 log f(yin,9n) 
TG — T "in " iiVOn"°n'Din = I     jns ——-2- + A.  - n(9 -9 )B  + higher order terms 

i=l 
(4.4.4) 

where 

n  32 log f(yin,6 ) 
A,-n = I      aflft,,        (Y. -y.n) = A<« e« (4.4.5) in   . 2i     dody in •'in    in n 

and 

.  n  32 log f(Y. ,§ ) 
B.  » - ±  J in     = B(9)+0 (1) = B(8-.)+On(l) 

i=l      3 9 n   P KL   p 
(4.4.6) 

and the sum on the right hand side of (4.4.4) vanishes. 

Thus 

/n(9 -9 ) = - B~l  — A.  + 0 (1) (4.4.7) n n      m ^ in   p 

But A.   is a linear function of the order statistics, in 
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and by the Chernoff, Gastwirth, Johns (1967) theorem, it 

is asymptotically normal.  To be more specific, given a 

vector function H(y), the distribution of 

n 
T » -=• I    H(y. )(Y. -y. ) 
n /n  i=l - xn  in ln 

converges to N(0,Z*)  where 

Z* = cov (C(Y)) 

and 

C(y) = /H(y)dy 

In our particular application 

32 log f(y,e ) 

£(^ : 5yTe  

and 
3 log f(Y,9 ) 

£(Y> =  315 ~ 

Thus 

L(/n"(9 -9)) = N(0,Z. ) (4.4.8) n  n in 

where 
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hn = BliA2nBln *4'4'9) 

and 

A2n'5E( J5 ' ( T6 » (4.4.10) 

Since  8   converges slowly to  9VT, we tabulate  9 
n KJ_I n 

and the elements of  £,   for various values of n.  We in 

include the limit  2(9•).  These tabulations appear in 

Table 4.4.11 for the normal and logistic where yVT   = 0. 

For the slash distribution where yKT   >  0, we simply KL 

present Z (QKjJ • 

Table 4.4.1  Various asymptotic variances for 

Normal, Logistic and Slash distributions 

ZKL f°r normal ZKL f°r logistic 

1.0647 0 0 3.0116 0 0 

0 0.8668 -.1290 0 3.3921 -.1997 

0 -.1290 0.2431 0 -.1997 .4515 

where 9KL = 10, 1.251, 0)' where 9RL = (0,2.171,0)' 

ZK  for slash 

5.375     0        0 

0     20.4431   -.3318 

0     -.3318     .0582 

where 8RL = (0,3.335,1.246)' 
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El,1000 for normal        Zl,1000 for lo9istic 

.9919 0 0 3.0110 0 0 

0 .8869 .2364 0 3.3419 -.2763 

0 .2364 .4596 0 -.2763 .3872 

where Q±  1QQQ  = (0 ,1.280,-.214)•  where 1  1QQQ  = (0,2.184,-.046) • 
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4.5.  The Normal-like distribution 

We describe here another approach to analysing the 

asymptotic properties of the NPS estimator.  This approach 

has some theoretical shortcomings, which are emphasized 

by the comparison of the theory with the simulations for 

moderately large sample size. 

A major theoretical problem has been that the 

Kullback-Leibler information  I(g,f) = °°  for  g  with 

infinite support and  f  NPS with y   < 0.  Our approach 

is to replace  g  when it has finite support by a distri- 

bution  g  which "look like"  g  over most of its range 

but which differs in the far tails, in that it has finite 

support.  Since  g  is close to  g   one may hope that 

the NPS estimator applied to  g  would have similar 

properties to that when applied to  g .  Since  g   has 

finite support, the difficulty with the Kullback-Leibler 

information will be alleviated.  For the theoretical 

comparison using the "look alike" distribution in simu- 

lations, we need to go through the following steps. 

Suppose  t   is defined by 

t 

/   g(y.dy = 1 - e/5  and  A£ = T (1 - -^-)     where  n = --. 
— CO V 

n 
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STEP 1  Define g„  as follows 

ge(y) - 

g(y) 

he(y) 

yl i t( 

t, < |yl < A6 

lyl > A« 

As an example, we will take  g  to be the normal 

distribution and we call  g  the normal-like distribution, 

indexed by the parameter  £, and schematically represented 

in Fig. 4.5.1. 

Normal part 

Polynomial part 

Fig. 4.5.1.  Normal-like density 
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Here, 

2 
y 

I   2" 
g(y) = <J>(y)  where 4>(y) =   e 

/T-(T 

and 

h£(y) = (A£-Y)
2{a£ + b£(A£-y) + c£(A£-y)

2} 

The conditions are that each "far tails" have probabiiity 

0.2e and that the density and its first derivative be 

continuous at t  and A .  Here  t  is  *(l-0.2e). 

The parameters  t , A , a , b  and  c  are tabulated 

in Table 4.5.2. 

Table 4.5.2   Parameters of the Normal-like distribution 

fce      Ae       ae        be 

0.002     3.353     3.841     0.0454     0.1566     0.1558 

0.001     3.540     4.011     0.0251     0.0899     0.0930 

STEP 2   Calculate  6KL£ = (0,TRLe,YKL£)', the 

parameter of the NPS g   which is closest 

to  g   in the Kullback-Leibler sense. 

To do so we maximize 
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/(log f) «g dv = / la(^)2 + b - log T}'<J>(v)dv 
e    -T   T 

t 

+ 2/ %(y) [log j^  - (1 + i)log 11 + £(* - l))]dy 

= (5- + b - log T)12«(T) - 1> - 2-^<j)(t) 

+ 2 log T^{$(t£) - *vx) + .2e) 

t 

- 2(1 + i)/  <My)log 11 + X(J - l))]dy 
Y T c x 

- 2(1 + hf      [(A£-y)
2la£+b£(A£-y)+c£(A£-y)

2)]-log 11 + I(X - 1) }dy 
Y t 

Table 4.5.3 lists  T   , YVTr  which were computed for 

various values of  e. 

Table 4.5.3  T
KL£' 

YKLe  w^ich minimizes  Kg ,f)  for 

various  e's. 

£ TKLe YKLe 

0.002 1.309 -.106 

0.001 1.291 -.127 
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STEP 3  Calculate asymptotic variance of  fVT_  when 

underlying distribution is  g . 

From Huber (1967) we see that for very large samples 

from g , the asymptotic distribution of the NPS estimator 

9 „  satisfies ne 

W/n(9n£ - 6KL£)) - N(0,Z£) (4.5.4) 

where 

Ze = Bl\Bz <4«5-5> 

3 log f(Y ,8   ) S log f(Y_,eKLe) 
Ae = E^ 5T—— < ^^£),1      (4'5.6) 

and 

32lc e' KLe' 

36; 
B£ = - E[ y= £SS-] (4.5.7) 

and these expectations are with respect to the distribution 

g  of Y .  In Table 4.5.8 the asymptotic variance of 

U „  are tabulated, ne 
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Table 4.5.8 .The asymptotic variance of  UNps when 

underlying distribution is  g 

e n A.V. of uNps 

.002 500 1.064 

.001 1000 1.045 

In simulations which use samples of  n = 1000  drawn 

from a normal population, the variance of  UNpc  is 1.013. 

The asymptotic theory of the Normal-like distribution 

slightly over estimated the asymptotic variance.  But 

if we try various kinds of constant multiply by  e  as 

the tail area, then we will get better approximation. 

4.6.  Sensitivity and Influence curves 

The study of robustness involves consideration of 

sensitivity to outliers.  The sensitivity curve of the 

estimator  T   is defined bv n 

sc(y;y1,y2,...,yn,Tn) = 

(n+l){Tn+1(y1#....,yn,y) - Tn(ylf... ,yn) } (4.6.1) 

where the y.'s are the observations. The sensitivity 

curve describes the effect of an additional observation 

at y. An estimator with a high resistance to outliers 

will have a low sensitivity for outlying values of  y. 
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For the estimator T = y , SC = y - y  which becomes n  •* n n 

large as  y •*• + °°. 

This curve is inconvenient to use because it depends 

not only on y and T but also on the observed data 

y ,y2,...,y .  One way of avoiding this difficulty is 

the use of the influence curve.  If the estimator T n 

can be expressed as a functional of the empirical 

distribution  G , i.e.  Tn = T(Gn), then Hampel (1974) 

introduced the influence curve 

IC(y;G,T) = lim [Tll-e) G + £-<5y} - T{G}]/£ (4.6.2) 
E->-0 

where  5y represent the distribution which assigns 

probability one to the point y.  For the estimator 

T = y ,  T(G) = u  and  IC = y - u.  For any M-estimator 

it follows that (see Huber (1981)) 

IC(y;9) = ciMy;9) 

where  c  is constant and  tj>(y;6) = 3p(y;9)/3y.  Our 

NPS estimator may be regarded as an adaptive M-estimator 

where the form of  tp  is data dependent and the above 

result is not sufficient to make the use of the influence 

curve convenient for our estimator. 
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We choose instead to rely on the use of the synthetic 

example xn ,...,x   where x.   is the  i/(n+l)  fractile in     nn in 

of G.  The resulting curves will be called a stylized 

sensitivity curve (SSC). 

In Table 4.6.3, we present a qualitative description 

of the stylized sensitivity curve based on Gaussian G. 

In Figures 4.6.4-4.6.6 these curves are graphed for the 

Gaussian, Logistic and Slash distributions respectively. 

In each of these cases the SCC is bounded.  This is an 

anticipated consequence of the following heuristic 

argument.  First, as y •*•  + °°, the estimate  y  of the 

tail thick parameter or  x  the scale parameter must 

get large.  But  T  is pretty much constrained by the 

implicit requirement that mont of the observations should 

lie between  y + T.  Explicitly the term - log ~    which 

occurs n+1 times in the likelihood based on the sample 

y, x, ,...,x  , kee s  T  from growing too fast.  If now 

we treat the Nps estimator as an M-estimator with  p(y-y) 

replaced by  - log T~ f(y-u;0,x,y)  as though  T  and  y 

were fixed, the sensitivity would be reflected by the 

corresponding 

, / N    d+y) sgn (v)     ~    i 'My) = —J -t—t **•*   for  jy| > x 
ct{l + 1(1 - 1) } 

C T 
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«i " —1 
as y * *>,   and y -*-  », this quantity behaves like  (y-x) 

which approaches  0. 

For the sensitivity curves in Fig. 4.6.4 - 4.6.5 

(Normal or Logistic case) y     is negative where  y = 0. 
'A ^ 

Since y     for n = 19  reaches  0 much faster than y 

for  n = 999, so in the  n = 19  case we have an earlier 

peak point than in the n = 999  case. 

For the sensitivity curve in the slash case, y     is 

positive where y = 0, so the peak point occurs at  x. 

When y is large, y     for n = 999  is larger than y 

for n = 19, so the sensitivity curve for n = 999  drops 

down faster than the sensitivity curve for n = 19. 

4.7.  Simulation results 

Simulations were carried out to determine the sampling 

properties of the NPS estimator for finite samples from 

the Normal, Logistic and Slash distributions.  We present 

the variance of  p  (relative efficiency compared with 

M.L.E.) and standard deviation of variance of \i     based 

on sampel of sizes 20, 100, 1000 in Table 4.7.1.  Also 

for the comparison purpose, we present the results of 

further simulations using two adaptive trimmed means for 

comparisons with the NPS estimator.  The two adaptively 

trimmed means will be denoted JBT and WHD.  The JBT method 
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Table 4.6.3 Behavior of the S.C. for the NPS estimate where 

underlying distribution is Gaussian 

Range Behavior 

0 < y <_ T Almost linear, a does not vary much 

(since i|»(y) = - 2a*y  if  |y| < x) 

T < y < T* Curved upward, since y < 0  i|) (y)  goes 

up. 

X* < y < x** Curved downwards, because y     increases 

and approaches to  0.  We have range 

expansion for iMy) 

x** < y Asymptotically goes to  0, because y  = 0 

at  T**  and goes up.  We have infinite 

range for \\>(y) 
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uses either the 8% trimmed mean or the 25% trimmed mean, 

the choice based on whichever has the smaller estimated 

standard error based on variance calculations on the 

particular sample.  The JBT estimate is proposed by 

John Tukey and, as described in Andrews et Al. (1972) 

is simple, robust and performs relatively well.  The 

WHD method is simpler and chooses between the ordinary 

mean and the 25% trimmed mean based on same criteria, 

proposed by William DuMouchel. 

Table 4.7.2 presents the results from 500 replications 

with various variance reduction methods which will be 

described in sections 6.2 and 6,3. 

Although these location estimates of  y may not be 

affected by outliers, we also present probability plot in 

Fig. 4.7.3 - Fig. 4.7.5, so that we can examine the outliers 

Since  I, ,  is given by  J(—r°-2—) f ^x f     for 
u, y ox 

the logistic distribution, 

I   = J{ ^ log   
e"X  ,}2  iJ^ dx m  1 

U.P    *x     (l+e-V   (l+e-X)2      3 

so the Cramer Rao bound for estimating the location parameter 

of a logistic distribution is 3.  For the slash, by 

numerical integration, we get 4.847 as the asymptotic 

variance of an efficient location estimator. 
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Table 4.7.1  Product of sample size and variance of the 

location estimate  u, relative efficiency*, 

and standard deviation of variation of y. 

Distribution  Normal    Logistic      Slash 

sample 

size (n) 

n x v    1000     1.013+.001**3.006+.074*** 5.240+.139** 

efficiency* .987        .998 .925 

n x V      100     1.067+.005  3.065+.080    5.698+.196 

efficiency* .937        .979 .851 

n x v       20     1.086+.006  3.330+.124    6.711+.380 

efficiency* .921        .901 .722 

*   compared with MLE 

**   from formula 6.2.1 

***  from formula 6.3.4 
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We conclude that for most cases NPS estimation is 

better than or about as efficient as the JBT and WHD 

estimators when the sample size  n  is greater than 100 

When  n = 20, the WHD method performed slightly better 

in these simulations, with NPS and JBT about equal. 

If we compare our simulation results for n = 1000 

with the asymptotic variance of Huber's M-estimate 

(see Table 4.3.4), we can say that regardless of how 

Huber's trimmed constant k  is chosen, in most cases 

NPS is better than Huber's M-estimator.  If the tail 

behavior of the distribution generating data is far 

from exponential, then the NPS estimator is always 

more efficient than Huber's M-estimator. 
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Chapter 5 

The Two Sample location Problem and the Asymmetric Model. 

5.1.  Problem description 

One of the fundamental problems of statistics, often 

encountered in applications, is the two sample location 

problem.  Let G(x)  be a symmetric distribution and let 

y,,y-/..•,y_ and  z.,z2,...,z  be independent random 

samples from G(y-y,)  and G(y-u2)  respectively.  It 

is desired to estimate  <5 = u, - u2«  
0ne waY to proceed 

is to estimate  6  by the difference of two separate 

NPS estimations of  u,  and  y , thereby ignoring the 

fact that  Y  and  z  have common distribution except 

for location.  A natural alternative of course, is to 

extend the concept of NPS estimation to this problem by 

applying the method of maximum likelihood to the model 

where the  Y's  and  Z's  have common scale and shape 

parameters.  That is, we act as though the Y.  come 

from NPS(U,,T,Y)  and the  Z.  from NPS(U2/T,Y). 

Another alternative is to pool the estimate of Y 

but to permit the use of separate  x's.  This would be 

most appropriate for problems where one anticipates the 

possibility of different scale parameters but common tail 
Y-U-L 

behavior, i.e. distribution of the form G( )  and 
1 



66, 

y-u2 
G(—•-—).  Then we apply MLE  to NPS(u^,T^,y)  for Yj_ 

and NPS(u2,x2,y)  for Z.. 

5.2.  The computation for the two sample model with 

possibly different variances. 

We present an iterative method of estimating the 

parameters for the two sample problem with common  y  and 

possibly different scale parameters. 

STEP 1  Calculate the NPS estimator for each sample 
Ak /\     ^ 

separately, yielding  9  = (y ,T ,y )'  and 
/\    y\    s\ 

I  = (u_,x ,y  )'  respectively. 
o     z  z  z 

STEP 2   Let 

y • - u 
v. = —-^ ^ i = 1,2,... ,in 

T 
y 

and 

z. - v 
vm+<   - -^  J = 1,2,...,n 

Tz 

B ased on the sample  {v. : 1 < i < m+n}  apply MLE 

to the model  NPS(0,l,y )  to estimate y   , 

STEP _3   Based on the sample  {y. : 1 < i < m}, apply 

MLE  to the model  MPS(y,T,y )  with  y   determined in 
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**• /\ 

STEP 2 to revise  y ,x .  Revise  y„,T   similarly.  If y' y z' z 
A     /N 

y ,x , y  and x  are all sufficiently close to the 

previous values, stop the iteration.  Otherwise return 

to STEP 2. 

Proposition 5.2.1  The iterative method leads to a 

sequence of estimates which converge to a local maximum 

of the MPS likelihood function. 

To prove this proposition we introduce some notation. 

Let L(y_;6)  be the NPS  likelihood based on the sample 

Y_ = (Yi rY?' • • • 'Yvp) •  Let i represent a vector all of 

whose elements are unity.  Denote the i-th estimate of the 

parameters  y ,...,Y  by y. ,...,y.   ,  with corresponding 

values for  v. = (T7 (y-y. 1), TT (z-y. 1)). —i     ly *•  iy-- '  IZ -  IZ- 

First, we observe that 

T /      \    ~mT , — 1  — 1  .  , 
My_;y,T,y) = x X(T y_;x y,l,y) 

L.(y_;y,T,y) = L (y_-yl ;0 ,x , y) 

and consequently 

-1 
My_;u,T,y) = x-mL(x" (y-ul) ;0,1,Y) 

After completing STEP 2, our combined likelihood is 
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given by 

-m-n 
Ll = TlyTllL(Xl»0'lrYlv) - L^^ir

Tly^lv),L(^UlZ'Tlz'Ylv) 

< L(I;u2y,x2y,Ylv)-L(z;U2z/T2z,Ylv) = T^-T^L (v2;0 ,l,Ylv) 

- T2yT2zL(l2;0'1'Y2v) = L (I;y2y'T2y'y2v> *L (^2z'T2z'Y2v> 

= L2 

Thus the likelihood function is nondecreasing after each 

pair of STEP 3 and STEP 2.  If the parameters change at 

a step only if the likelihood increases, this procedure 

leads to a monotonic increasing likel ihood unless the 

process stops.  The process can not yield a limit point 

which is not a local maximum for the gradient is not 

zero at such a point, and one of the two steps will lead 

to a substantial increase in the likelihood, once we are 

in the neighborhood of such a point.  Thus the process 

must lead to a local maximum or an unbounded sequence. 

But it is easy to see that the likelihood approaches 0 

for a sequence which is unbounded in the parameter space. 
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5.3.  The asymmetric model. 

We have confined attention to the location parameter 

for symmetric distributions.  The estimation of location 

for an unspecified asymmetric distribution is not a well 

defined problem.  On the other hand, from the point of 

view of estimating densities, we may pose the problem of 

using an asymmetric version of the NPS model to approximate 

unimodal distributions and to estimate these distributions 

by estimating the parameters of that model.  We shall say 

that a random variable  X has the standard asymmetric 

NPS distribution with skewness parameter s, left tail 

parameter yT ,.  and right tail parameter  Y„, if it has 

a density of the form 

f0(x,s,YL,YR) 

1(1 +  L(_ | _ 1)}  L    Ai<x<_s, YL ,   0 

= J 

aL(f> +bL(!^+C 

aRx +b x+c 

R      R 

-s<x<0 

0<x<l 

(5.3.1) 

1<X<A2, YR^ 0 
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dL 
If    YT   >  0     then    A,   = °°,   and if    yT   K  °     then    A,   =  s (- 1) . 

Li 1 li A Yf 

dR 
If YR > 0  then A2 = °°, and if  YR < 0  then A2 = 1 - --. 

R 

If    YL =  0     and    x  <  -s     then    A,   = °°    and 

-i-(-f-l) 
f0(x,s,0,YR)   = jjg-e     L (5.3.1') 

If     YR =  0     and    x  >   1     then     A~   = °°     and 

-|-(x-l) 

f0(x,s,YL,0)   = j^g-e     R (5.3.1") 

The parameters  dL, d , a_f a_, b_, b  and c depend on  s, 

YL  and Yo' an<^ are determined by the requirement that 

Pr{-s <_ x < 0} = Pr{0 <_ x < 1} = 0.4, and the spline 

constraints so that the density and the first derivative 

of the density are continuous everywhere. 

The parameters  dL, dR/ aL, aR, b-, b  and c 

satisfy the following spline equations: 

f0(-s
+) = fQ(-s") (5.3.2) 

fQ' (-s
+) = fJ(-«") (5.3.3) 

fj(0+) = fj(0") (5.3.4) 

fQ(l
+) = f0d") (5.3.5) 
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f0(1 > = f0^ > (5.3.6) 

0  aT (J) +bT (|) +c r    L s    L s   , J  e dx = 0.4 (5.3.7) 
-s 

/ 

1 a_x +b_x+c 
e dx = 0.4 (5.3.8) 

In addition, we also consider the family of the variables 

Y = u + xX where X has the standard asymmetric NPS 

distribution, and Y has the asymmetric NPS distribution 

ANPS(u,x,s,YL,YR), with median at  y  and interdecile 

range equal to  t(l+s). 

(See Fig. 5.3.9) 

Fig. 5.3.9.  Schematic asymmetric NPS model density shown 

has s = 2, yL = 0, yR = 0 

where  y-sx : 10 

y    : 

y+x  : 90 

th 

.th 

percentile 

50   percentile (median) 

th percentile 



72. 

This is a 5-parameter family.  The five primary parameters 

are  y, the location parameter; T, the scale parameter; 

s, the skewness parameter; YL> 
tne left tail shape parameter; 

and YD the right tail shape parameter.  The other 

parameters  d , d_, a,, aR, b_, b   and c  are defined 

implicitly by  s, YL  and  YR/ 

Fig. 5.3.10 presents some variations of the asymmetric 

NPS model.  In Fig. 5.3.10(a), the 3 densities 

are all symmetric.  One has exponential tails  (YT • Y« • 0)i 

and for comparison the other two have thicker tails 

(YL = YR =.0.3)  or thinner tails  (YL = YR = -0.3).  In 

Fig. 5.3.10(b), all 3 asymmetric NPS densities have 

exponential tails.  One is symmetric (s=l) and for comparison 

the other two are skewed to the right (s=2) or skewed to the 

left (s=0.5).  In Fig. 5.3.10(c), all 3 asymmetric NPS 

densities are skewed to the right, and have exponential 

tails.  One has standard scale parameter (T=1) and for 

comparison the other two have larger scale (T=2) or smaller 

scale (T=0.5).  In Fig. 5.3.10(d), all 3 asymmetric 

NPS densities have the same scale and a skewness parameter 

of s = 2.  One has exponential tails and for comparison 

the other two have a thicker right tail  (YT,=0.5) or a 

thinner left tail  (L=-0.5). 
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Chapter 6 

Computational Problems 

The calculation of the NPS estimates and the 

simulations that were carried out required extensive 

computations.  In this chapter we discuss three methods 

which were applied to reduce the computer time used or 

the programming difficulty. 

6.1.  The computation of the NPS estimates 

The NPS estimates require a maximization subject 

to the spline constraints (3.1.2) to (3.1.4). First 

numerical calculations were performed to construct an 

accurate table representing a, b and c as functions 

of Y. For the later calculations, interpolation on 

that table was performed. A portion of that table is 

presented in Table 3.1.6. 

The next part was that of maximizing the likelihood. 

For this a simplex method developed by Nelder and Mead (1965) 

was applied.  This method is a direct search procedure 

and is not related to the simplex method of linear programming, 

It has the following advantageous properties. 

(i)  No assumptions are made about the surface except 

that it is continuous and has a unique maximum 

in the area of search. 
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(ii)  This method does not involve any derivatives, 

(iii)  This method is effective and computationally 

compact. 

The details of the simplex method are as follows.  Suppose 

the problem is to find the maximum of some function 

f(x,,x2/•••,x ).  Since  f  has  p variables, we need 

to evaluate  f at  (p+1) trial values of  x, denoted here 

by Art,A,,...,A .  Assume that these points lie on the 0  1     p 

vertices of an irregular simplex in (p+1) space and that 

f(AQ) = min f(A.).  In this case, a reflection is made 

through the point C (centroid of face opposite AQ) to a 

point B where B = AQ + 2(C-AQ).  One version of the 

simplex method consists of replacing  AQ  by  B, relabeling 

the points so that  f(An)  i-s the smallest, and repeating 

the process of replacing the worst point by its reflection B 

A more sophisticated version of the algorithm was actually 

used, in which AQ  is replaced by  D, where  D  is of the 

form AQ + d(C-A-).  One of four possible values of d  are 

used, depending on the relationship of  f(B)  to 

f(A0) ,•• •,f(A ).  (Fig. 6.1.1-6.1.4 shows p=2) . 

Case 1.  If  f(B) > max (f(A,),...,f(An)), then an 

extension is made where  d = 3.  (See Fig. 6.1.1) 
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x. 

Fig. 6.1.1 

(Dashed lines show contours of f) 
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Case 2.  If  f(B) < f(AQ), then a contraction is 

made where  d = 0.5  (See Fig. 6.1.2! 

x. 

Fig. 6.1.2 

Case 3.  If  f(AQ) < f(B) < min (f(A^,...,f(A )), 

then a contraction is made where d = 1.5  (See Fig. 6.1.3) 

ll \ 

Fig. 6.1.3 
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Case 4.  If 

max (f(A1),...,f(A )) < f(B) < min (f (A-^ ,. .. , f (A ) ) . 

then a reflection is made where  d = 2  (i.e.  D=B) 

(See Fig. 6.1.4) 

Fig. 6.1.4 

6.2.  Swindle 

Whenever we try to do experimental sampling in a 

computer simulation, it is wise to try to find a restate- 

ment of the problem which reduces the amount of computation 

required to achieve the desired precision in results.  The 

restatement we consider here is called a Monte Carlo 

swindle, (See Gross (1973)).  Let  {x., i = l,2,...,n> 

be a'sample of size  n  from some symmetric distribution  G 

of a random variable  x  which has the form x = u/v 

where  u  is  N(0,1)  and  v  is independent and positive. 
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A number of important distributions (Student's t, Cauchy, 

double exponential, slash) are of that form.  If  v = 1, 

G is N(0,1), and if v has the Uniform (0,1) distribution 

x  has the slash distribution. 

u. 
Our observations thus are  x. = — .  Given 

1   v. 
l 

v., x. *  N(0,v~2).  Let 

?. r      2.-2 x = Zx.v. /Su. , 
1 1 /  1 

and 

2    1  _,   *.2  2 
S  = H^T Z(xi~x) vi * 

Also, let 

ci = (xi-x)/s     i = 1,2,...,n 

represent the elements of the configuration vector c. 

It is known that  c, s and x  are conditionally independent 

given  v.  Moreover the conditional distributions of  x 

and  s2  are N (0, (Zv^) ~1)     and that of  xjLi/(n-l). 

Now let T  be a symmetric, scale and location invariant, 

statistics of the sample  x.  Then 
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Tn[(-~ a-l)/b] = [Tn(x) - a]/b 

and 

T (x) = - T (-x) n —      n — 

and consequently ET (x) =0  if the expectation exists. 

While the variance of  T  can be estimated directly by 

simulation, we shall express this variance in terms of 

known quantities and of the expectation of a conditional 

expectation which has smaller variance and can therefore 

be estimated more precisely.  Thus 

ET 2 = E{E(T 2
|V,C)} 

n        n '— — 

= E[E{[x +  sTn(c)]
2|v,c}] 

= [-i-y + T 2(c)] 
v 2. n — 
Zvi 

since  E[x*s|v,c] = 0, E[x |v,c] = 1/^v.   and 

E(s |v,c) = 1. 

-1 A 

Now T (c) = s  [T (x) - x]  tends to be less variable 
n —        n — 

than T (x)  and its variance can be estimated directly n — 

from N  simulations by 

E(Tn
Z(£)) = N X I     Tn^(£j). 
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Also the variance of this estimate is estimated by 

N    . ,  N 0 
{ I      Tn <£-i> " N  t /  T (C.)]^>/N(N-1). (6.2.1) 
j-1  "   J j=l      J 

2 -1     -1 Finally, for the normal  G,  E [ (Zv. )  ] = n 
2 

For the slash distribution,  Ev.  = n/3 + 0(1)  and 

2-1      —1      —2 
E((Iv. )  } = 3n  + 0(n  )  and this substantial 

2 
contribution to E[T  ]  need not be involved in the 

simulation. 

6.3.  Variance reduction for the logistic distribution. 

The Monte Carlo Swindle is not applicable to the 

logistic distribution.  Here we use another principle. 

If our statistic T  is highly correlated with another 

statistic  T'  whose variance is known, the variance of 

T  can be expressed in terms of that of  T"  and of a 
2 

relatively small part of  T  left over from the linear 

2        2 approximation to the regression of T  on T" . 

Let T and T*  have mean 0.  We write, 

T2 = aT*2 +b+u=T2+u (6.3.1) 

"2 .   . where  T   is the linear approximation to the regression 

and 
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a = Cov (T2,T,2)/var (T'2) (6.3.2) 

then 

E(T2) - E[T2-aT'2] + aE(T'2) (6.3.'3) 

and 

Var(T2) = Var (T2-aT'2) + a2 Var (T'2) (6.3.4) 

2 
Thus if a and E(T' )  are known, we can use the sample 

2    2 to estimate E(T -aT' )  which has relatively small variance 

2 2 if the correlation of  T  with T*   is high.  If  a  is 

unknown, it too could be estimated from the simulation. 

While the precise value of  a  is necessary for (6.3.4), 

an approximate value will serve for (6.3.3) which is the 

essential equation to exploit. 

For the logistic distribution we used the mean  X 
2 

for T'.  Then E(T' ) = 3.28987.  As a simulation results, 

we get a = .897, .908, .768 and variance reductions are 

89.3%, 82.5%, 71.8% where sample size n = 1000, 100, 20 

respectively. 
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Chapter 7 

Conclusions 

Simulation studies were conducted assuming the data 

came from Normal, Logistic, and Slash populations with 

sample sizes 20, 100 and 1U00.  The NPS estimate seems 

to be more efficient compared with other adaptive estimates, 

such as  JBT  and UHD, specially for medium (100) to 

moderately large (1000) sample sizes.  We have shown that 

the NPS estimate of location has lower asymptotic variance 

than Huber's M-estimator in most cases, regardless of 

Huber's choice of  k. 

By a sensitivity curve analysis, we show that the 

NPS estimate of location guarantees resistance to outliers. 

For the two-sample location problem, we propose an 

iterative method to estimate the shift parameter when the 

scale parameters may be unequal.  We proved that this 

iterative method converges to the desired M-estimate for 

an arbitrary scale and location family of symmetric 

distributions. 

Finally we proposed an asymmetric family of MPS 

distributions which can be used to generalize many of 

our results to help analyze asymmetric data. 
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Appendix 

*** SIMPKIM  ** 

7 Z+SIMPKIM DATA;MI',SI;GI',I',KK;AA',YY;MED;TEM;NEW;VAL;DUM 

o MLE CALCULATION FOR SYMMETRIC NPS  DISTRIBUTION 

q USING SIMPLEX METHOD 

fl  

+ERROR IF(pDATA)<10 

AA+  3 4 pO 

rr+upo 

MI+0.5 ORDERSTAT DATA 

SJ-K).5x(0.9 ORDERSTAT DATA)-(0.1 ORDERSTAT DATA) 

GI+Q 

DUM+(*pDATA)*0.5 

q SET INITIAL  4 POINTS 

AAZ;11+MI,SI,CI 

AAZ;2l+(MI+DUM),SI,GI 

AAC J 3]*Mi",(SI+DUM),GI 

AAZ;*1+MI,SI,(GI+0.1) 

P CALCULATE LIKELIHOOD  FUNCTION  VALUE FOR  n  POINTS 

LOOP:1+1 

Ll:YYZIl+DATA  LIKEFUN AAZ',11 

I+I+l 

+L1   IF I£H 

o FIND  THE POINT WHICH HAS MINIMUM LIKELIHOOD  VALUE 

AA+AAZ'AYYl 

YY+YYZ&YY1 

MED+(AAl;2l+AAZ;3l+AAlim )*3 

TEM+(2xMED)-AALill 
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VAL+DATA  LIKEFUN TEM 

+L2  IF VAL<IY[2] 

+LU IF VAL>IYlHl 

a REFLECTION 

AAZlll+TEM 

p CONTRACTION 

L2:NEW+Q,5xMED+TEM 

i'NEW+Q.SxMED+AAZlll*   IF VAL<IY[1] 

VAL+DATA  LIKEFUN NEW 

+L3  IF  VAL<YIL2l 

AAZlU+NEW 

+L5 

L3 :AA [ ; 13+0 . SxAA C ; 1] +AAL ; >+] 

AA C ; 23+0 . SxAA [; 2] +AA [ ; 4] 

AAZi31+Q.5xAAti3l+AALi*] 

+LS 

R EXTENSION 

LH:NEW*(2 xrffM)-MED 

VAL+DATA  LIKEFUN NEW 

AAZlll+NEW 

*'AAl;ll+TEM*   IF  VAL>XIZH 

o CHECK FOR  STOP ITERATIONS 

LS:MED+(.+/AA)** 

RK+(k+/UAZlH-MED'i*2) + ( + /(AAZi2l-MED)*2') 

KK+(.KK+(+/{AAZi31-MED)*2) + (.+/(AAZi*l-MED'i*2'i')*0.S 

+LOOP IF KK>0.001 

Z+AAl'.nl 

+0 

ERROR:n+'TOO  SMALL  DATA  NUMBERS' 
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+0 

V 

*** LIKEFUN  ** 

7 Z+DATA  LIKEFUN P\L\R',MI',M2',M3\M^\PA\DUM1',DUM2',DUM3 ;DUMn;MID;MAD 

0  

R LOG LIKELIHOOD  FUNCTION FOR SYMMETRIC NPS  DISTRIBUTION 

fl DATA  LIKEFUN   {M,S,G) 

q  

PA+NEUESTAB  P[3] 

MID+l/DATA 

MAD+r/DATA 

-•LO   IF P[3]£0 

-"L5   IF(,MID<PL11 -PZ2l*l-PAZll *P[3] ) 

*L5   IF(MAD>Plll+Pt2lxl-PAlll*PZ31) 

LO:L+P111-P121 

R+PH1+P121 

Ml^Ar^  IF(DATA<.L) 

M2+DATA  IFUDATA>L)A(DATAZR)) 

M3+DATA  IF(DATA>R) 

+L1   JF(|PC3])Z1E~6 

Z5aMl^((pA71)x®(0.1+PACl]xPC2] ))-(l++PC3] )x + /®(l+PC3Jx(L-Ml)+PC2]xp 

Cl]) 

+L2 

Ll:D£/Ml^((pMl)x®(o.i+PACl]xP[2]))- + /((L-Ml)+PC2]xPACl] ) 

L2:0£/M2«-((pM2)x®+P[2] )+ + / ( (PA [2] x (M2-PC1] )x (M2-PC1] )+P[2] xp[2] )+PA 

3]) 



90. 

DUM3 + ((.pM3)x9(0.1*PALll*Pl2l ))-(l+*P[3])x + /«(l+p[3]xO!3-fl)*PC2]xPA 

Cl]) 

*L4 

L3:Z?£/M3-»-((pM3)x®(o.l*P/lCl]xPC2] ))-+/( (MZ-R)*PZ2l*PAll] ) 

L4:Z+DUM1+DUM2+DUM3 

+0 

L5:Z«-"9999999999999 

•0 

V 

V Z+NEWES.TAB  G',I;F;A;B;C 

p  

A CALCULATE  C,A,B   USING  TABLE  TAB 

fl NEWEgTAB   (G) 

p  

+LOVER IF  GZ1.9 

+LBELOW  IF  C<~0.49 9 

F«-(G+0.5)xl000 

i>LP 

C«-27ifl CII + (TAB CJ+l]-TAB[I])x(P-J) 

A«--(l+G) + 2x<; 

B«—A+(®C)+2.302585093 

Z«-C,4,S 

-•0 

LOVER'. Z+ESTAB  G,"1.68605 

*0 

LBELOW'.Z+ES.TAB  G,"0.64184 

-•0 

7 

*** NEWE&TAB   *** 
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*** ES.TAB  **' 

7 Z+EgTAB P',C;C;AiB',INTiMl',M2;M 

fl  

p CALCULATE C,A,B  FOR NPS DISTRIBUTION 

R (C,A,B)+ES.TAB   (G,AI) 

fl  

G+Ptll 

INT+Q.1 

A+P121 

+L*  IF C="l 

Ll:A<rA + (-INT),Q,INT 

a'A+AL".000001'   IF G>~1 

ft'A+Ar.000001«   IF G<~1 

S-*-(-A)+®-A-5-5xl+C 

->L2 IF  OST/A 

MH-(*fl)x(-3.14159265U+A)*0.5 

M2«-(-2*4)*0.5 

M+M1*(NDTR M2)-(NDTR-M2) 

+L3 

L2-.M+U.B)  INTEGU-1),!) 

L3:M+\M-0.3 

DUM^M-L/M 

a'INT<rINT*21   IF  l=0tfM[2] 

A+1+DUM/A 

+L1  IF(1/M)>1E~6 

C+-(1+G)*2*A 

S-«--(2.3 02 5 8 5093+®C)+A 

+LAST 
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S+-0.91629 

• C+l+4 

LAST:Z+C,A,B 

+0 

V 

*** NDTR  *** 

V P+NDTR X;T 

nTHIS PROGRAM COMPUTES THE AREA  UNDER THE CURVE OF THE STANDARD NOR 

MAL  DENSITY. 

r«-+l+0.2316»+19x|X 

P+  0.3193815 "0.3565638 1.781478 "1.821256 1.33027H 

P-H (X2>0)-(0.3989423x*~0.5xXxX)x(r».*i5) + .xP 

7 

*** INTEC  *** 

7 Z-rP INTEG VECliH;Ml;M2;M3;Mn;FROM;TO;SUMl;SUM2;SUM3iSUM',TEMP;OLD 

I NEW;SI;S2;NUM;STEP 

p  

A   INTEGRATION PROGRAM FOR ES.TAB   (MODIFIED  SIMPSON'S RULE) 

p  

XA+Pll   2 3] 

Xfl«-P[4 5 6] 

r0«-7ECl[2] 

Ml+TO-FROM 

NUM+V 

H+M1*8 

M3+FR0M+H*(1   3 5 7) 

Mm-FJ?OM+2?x2x(i3) 
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SH-50L ((XA ° . x (M3xW3 ) ) + (XB° . * (4p 1 ) ) ) 

SUM1-+/*S1 

S2^-50L((Xilo.x(MUxMu)) + (XB«'.x(3pl))) 

StfM2«-+/*S2 

SUM3«-(*5Ql(XAx(FROM*2))+XB) + (.*50l(XA*(TO*2))+XB) 

SUM<rSUM3 + (n*SUMl )+2*SUM2 

0LD+SUM*H*3 

STEP+Q 

L00P:H+Hi2 

STEP+STEP+1 

NUM+NUMX2 

TEMP+SUM-SUM1*2 

M3+FROM+Hx(2*(\NUM))-1 

S1+50L( (X4o . x (A73x«3 ) )+(XB°. x (NUMpl) ) ) 

sc/M^r^MP+'+xsaMi 

NEW<rSUM*H*3 

TAG+NEWZ1 

TEMP+Ul (NEW-OLD)xTAG 

OLD+NEW 

+LOOP IF(TEMP*1E~8)A(ST^P^10) 

Z+NEW 

V 

*** ORDERSTAT  ** 

V Z<-P ORDERSTAT X;Y',N 

N+pX 

Y+XC&X] 

2^-YCr^xP] 
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